Solutions of First-Order Volterra Type Linear Integrodifferential Equations by Collocation Method
Solutions of First-Order Volterra Type Linear Integrodifferential Equations by Collocation Method
Blog Article
The numerical solutions of linear integrodifferential equations of Volterra type have been considered.Power series is used as the basis polynomial to approximate the solution of the problem.Furthermore, standard and Chebyshev-Gauss-Lobatto collocation points were, respectively, spidertattooz.com chosen to collocate the approximate solution.
Numerical experiments are performed on some sample problems already solved by homotopy analysis method and finite difference methods.Comparison of the absolute error is obtained from the present method and those from aforementioned jerome brown jersey methods.It is also observed that the absolute errors obtained are very low establishing convergence and computational efficiency.